
CS 230 – Deep Learning https://stanford.edu/~shervine

VIP Cheatsheet: Tips and Tricks

Afshine Amidi and Shervine Amidi

November 26, 2018

Data processing

r Data augmentation – Deep learning models usually need a lot of data to be properly trained.
It is often useful to get more data from the existing ones using data augmentation techniques.
The main ones are summed up in the table below. More precisely, given the following input
image, here are the techniques that we can apply:

Original Flip Rotation Random crop

- Image without

any modification

- Flipped with respect
to an axis for which
the meaning of the
image is preserved

- Rotation with
a slight angle
- Simulates incorrect
horizon calibration

- Random focus
on one part of
the image
- Several random
crops can be
done in a row

Color shift Noise addition Information loss Contrast change

- Nuances of RGB
is slightly changed
- Captures noise
that can occur
with light exposure

- Addition of noise
- More tolerance to
quality variation of
inputs

- Parts of image
ignored
- Mimics potential
loss of parts of image

- Luminosity changes
- Controls difference
in exposition due
to time of day

r Batch normalization – It is a step of hyperparameter γ, β that normalizes the batch {xi}.
By noting µB , σ

2
B the mean and variance of that we want to correct to the batch, it is done as

follows:

xi ←− γ
xi − µB√
σ2

B + ε
+ β

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

Training a neural network

r Epoch – In the context of training a model, epoch is a term used to refer to one iteration
where the model sees the whole training set to update its weights.

r Mini-batch gradient descent – During the training phase, updating weights is usually not
based on the whole training set at once due to computation complexities or one data point due
to noise issues. Instead, the update step is done on mini-batches, where the number of data
points in a batch is a hyperparameter that we can tune.

r Loss function – In order to quantify how a given model performs, the loss function L is
usually used to evaluate to what extent the actual outputs y are correctly predicted by the
model outputs z.

r Cross-entropy loss – In the context of binary classification in neural networks, the cross-
entropy loss L(z,y) is commonly used and is defined as follows:

L(z,y) = −
[
y log(z) + (1− y) log(1− z)

]
r Backpropagation – Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to each weight w is computed using the chain rule.

Using this method, each weight is updated with the rule:

w ←− w − α
∂L(z,y)
∂w

r Updating weights – In a neural network, weights are updated as follows:

• Step 1: Take a batch of training data and perform forward propagation to compute the
loss.

• Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight.

• Step 3: Use the gradients to update the weights of the network.

Stanford University 1 Winter 2019

https://stanford.edu/~shervine

CS 230 – Deep Learning https://stanford.edu/~shervine

Parameter tuning

r Xavier initialization – Instead of initializing the weights in a purely random manner, Xavier
initialization enables to have initial weights that take into account characteristics that are unique
to the architecture.

r Transfer learning – Training a deep learning model requires a lot of data and more impor-
tantly a lot of time. It is often useful to take advantage of pre-trained weights on huge datasets
that took days/weeks to train, and leverage it towards our use case. Depending on how much
data we have at hand, here are the different ways to leverage this:

Training size Illustration Explanation

Small Freezes all layers,
trains weights on softmax

Medium
Freezes most layers,
trains weights on last
layers and softmax

Large
Trains weights on layers
and softmax by initializing
weights on pre-trained ones

r Learning rate – The learning rate, often noted α or sometimes η, indicates at which pace the
weights get updated. It can be fixed or adaptively changed. The current most popular method
is called Adam, which is a method that adapts the learning rate.

r Adaptive learning rates – Letting the learning rate vary when training a model can reduce
the training time and improve the numerical optimal solution. While Adam optimizer is the
most commonly used technique, others can also be useful. They are summed up in the table
below:

Method Explanation Update of w Update of b

Momentum
- Dampens oscillations
- Improvement to SGD
- 2 parameters to tune

w − αvdw b− αvdb

RMSprop
- Root Mean Square propagation
- Speeds up learning algorithm
by controlling oscillations

w − α
dw
√
sdw

b←− b− α
db
√
sdb

Adam
- Adaptive Moment estimation
- Most popular method
- 4 parameters to tune

w − α
vdw√
sdw + ε

b←− b− α
vdb√
sdb + ε

Remark: other methods include Adadelta, Adagrad and SGD.

Regularization

r Dropout – Dropout is a technique used in neural networks to prevent overfitting the training
data by dropping out neurons with probability p > 0. It forces the model to avoid relying too
much on particular sets of features.

Remark: most deep learning frameworks parametrize dropout through the ’keep’ parameter 1−p.

r Weight regularization – In order to make sure that the weights are not too large and that
the model is not overfitting the training set, regularization techniques are usually performed on
the model weights. The main ones are summed up in the table below:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0
- Good for variable selection Makes coefficients smaller Tradeoff between variable

selection and small coefficients

...+ λ||θ||1
λ ∈ R

...+ λ||θ||22
λ ∈ R

...+ λ

[
(1− α)||θ||1 + α||θ||22

]
λ ∈ R,α ∈ [0,1]

Stanford University 2 Winter 2019

https://stanford.edu/~shervine

CS 230 – Deep Learning https://stanford.edu/~shervine

r Early stopping – This regularization technique stops the training process as soon as the
validation loss reaches a plateau or starts to increase.

Good practices

r Overfitting small batch – When debugging a model, it is often useful to make quick tests
to see if there is any major issue with the architecture of the model itself. In particular, in order
to make sure that the model can be properly trained, a mini-batch is passed inside the network
to see if it can overfit on it. If it cannot, it means that the model is either too complex or not
complex enough to even overfit on a small batch, let alone a normal-sized training set.

r Gradient checking – Gradient checking is a method used during the implementation of
the backward pass of a neural network. It compares the value of the analytical gradient to the
numerical gradient at given points and plays the role of a sanity-check for correctness.

Numerical gradient Analytical gradient

Formula df

dx
(x) ≈ f(x+ h)− f(x− h)

2h
df

dx
(x) = f ′(x)

Comments

- Expensive; loss has to be
computed two times per dimension
- Used to verify correctness
of analytical implementation
-Trade-off in choosing h
not too small (numerical instability)
nor too large (poor gradient approx.)

- ’Exact’ result

- Direct computation

- Used in the final implementation

? ? ?

Stanford University 3 Winter 2019

https://stanford.edu/~shervine

