Deep Learning Algorithms Comparison

Algorithms	Applications	Pros	Cons
Multilayer Perceptron's (MLPs)> the most basic deep learning algorithm (with single hidden layer).> a form of feed forward neural network.> uses supervised learning technique called backpropagation for training.> model (example)	 > classification problems. > speech, image recognition & data compression. 	 > do not make any assumptions regarding the <u>Probability density</u> <u>functions</u> (PDF) unlike the other models which are based on Probability. > can distinguish data that is not <u>linearly</u> <u>separable</u>. 	 > when updating the weights in layers, network may be stuck in a local minimum which can hamper accuracy. > due to the hard-limit transfer function, the perceptron's can only give outputs in the form of 0 and 1.
Convolutional Neural Networks (CNN) > ConvNet is a popular deep learning algorithm which has hidden layers that perform convolutions. > has three main types of layers: convolutional (set of filters), pooling (down- sampling), and fully- connected (neurons) layers. > transform the original image layer by layer from the original pixel values to the final class scores. > use some regularization techniques like dropout where a particular node or connection is skipped. > model (example)	 > main use-cases in image recognition and object detection tasks. > recommender systems. > natural language processing tasks. > financial time series forecasting. 	> results are more accurate especially for image/object recognition use cases when compared to other ML algorithms.	> for training ConvNet, very high computation power is required. Thus, not very cost- effective.

Recurrent Neural	> mostly used in	> ability of to	> computation is time
	the fields of natural	remember information	> computation is time- taking because of its
Networks (RNNs)		throughout the training	recurrent nature.
> a type of ANNs which	language processing and	period plays a very	recurrent nature.
uses sequential or time		pivotal role in time	> difficulty of accessing
series data.	speech recognition.		> difficulty of accessing information from a
	> ideal for tasks	series prediction.	
> a class of neural	such as words auto	> model size not	long time ago.
networks that allow			
previous outputs to be	completion, text	increasing with size of	
used as inputs while having	recognition and video frames	input.	
hidden states.		> nossibility of	
	analysis.	> possibility of	
> allow the processing of		processing input of any	
variable-length (or even		length.	
infinite-length) sequences.			
> an output is produced			
which is coped and			
provided back to the			
network like a loop			
(internal memory).			
> model (<u>example</u>)			
Long Short-Term	> ideal for tasks	> can handle the	> high computation
Memory Networks	such as sentences	information in memory	and resources are
(LSTMs)	auto completion,	for the long period of	required to train the
> a special kind of RNN	caption generation	time as compare to	the model.
highly capable of learning	and video frames	RNN.	
long-term dependencies.	analysis.		> are prone to
long-term dependencies.	,		overfitting.
> network consists of	> anomaly		C C
different memory blocks	detection in		
called cells which	network traffic		
remember things.	data.		
> changes to memory			
blocks are done through			
mechanisms referred to as			
gates.			
50103.			
> model (<u>example</u>)			
/ <u></u> /			

Restricted BoltzmannMachines (RBMs)> unsupervised neuralnetwork that belongs toenergy based model.> a generativestochasticStochasticANNs that canlearn a probabilitydistribution over its set ofinputs.> are shallow, two-layerneural nets that constitutethe building blocks ofdeep-belief networks.> model (example)	 > feature extraction in pattern recognition and recommendation engines. > classification problems. > feature learning and topic modeling. 	> can be pre-trained in a completely unsupervised way as the learning algorithm can make very efficient use of unlabeled large data.	 > calculating energy gradient function while training is very difficult. > adjusting weights using the CD-k algorithm is not as easy as Backpropagation.
Radial Basis FunctionNetworks (RBFNs)> a simple three-layerfeedforward neuralnetwork with an inputlayer, a hidden layerconsisting of a number ofRBF non-linear activationunits, and a linear outputlayer that acts as asummation unit to give thefinal output.> the hidden layer uses anunsupervised learningalgorithm (k-meansclustering).> mean squared error(MSE) is used to determinethe error and the weightsare tweaked accordingly tominimize MSE.> model (example)	> mostly used for speech recognition, time series analysis, image recognition and medical diagnosis.	> fast training phase when compared to MLP, as there is no backpropagation involved.	> classification takes time compared to MLP due to every node in the hidden layer has to compute the RBF function for the input sample vector.

<pre>Self Organizing Maps (SOMs) > enable data visualization by reducing the dimensions of data through SOMs network. > group similar data items together by creating a 1D or 2D map. > weights are initialized randomly for each node. At each step, one sample vector x is randomly taken from the input data set and the distances between x and all the other vectors are computed. > model (example)</pre>	 > useful in the healthcare sector for creating 3D modeling. > Image analysis, fault diagnosis, process monitoring and control. 	 > easily interpret and understand the data using SOM. > dimensionality reduction is simpler to check for any similarities within our data. 	 > requires neuron weights to be sufficient to cluster the input data. > while training SOM, if we provide less or extensively more data may not get informative or very accurate output.
Generative Adversarial Networks (GANs) > unsupervised learning algorithm capable of automatically discovering and learning the patterns in the data. > GANs consist of two neural networks: a generator neural network that generates new examples and discriminator network responsible for evaluating the generated examples whether they belong to the actual training dataset. > model (<u>example</u>)	> widely used in the creative industry for 3D object generations. > useful in editing images (Deepfake), generating cartoon characters, illustrations for novels or articles.	 > able to learn the internal representation (messy and complex distributions) in any data. > can recognize objects as well as can calculate the distance between them. 	 > when generates new data from original data, no evaluation metric to judge the accuracy of output. > high computation and time required for model training.

Autoencoders> unsupervisedalgorithm similar toPrincipal ComponentAnalysis (PCA) to convertmulti-dimensional datainto low-dimensionaldata.> the encodercompresses the inputinto a latent spacerepresentation whichcan be reconstructedlater to get the originalinput.> the decoder aims toreconstruct the code toits original form but maynot be perfectly accurateas original and mighthave some loss.> model (example)	 > used in the healthcare industry for medical imaging (breast cancer detection). > coloring of images, image compression, and denoising. 	> usage of multiple encoder and decoder layers reduce the computational cost of representing some functions to a certain extent.	 > not efficient as compared to GANs when it comes to reconstructing an image. > might lose important data from the original input after encoding.
Deep Belief Networks (DBN) > a networks model built by stacking a number of unsupervised Restricted Boltzmann Machines (RBM) layers. > uses a layer-by-layer approach for learning all the generative weights and all the top-down approaches.	> mostly to recognize, cluster, generate images, video sequences and motion- capture data.	 > can work with even a small labeled dataset. > provide robustness in classification (view angle, size, position, color, etc). 	> high computation and time required for model training.
 networks are pre- trained by using the Greedy algorithm. model (<u>example</u>) 			

Transformer Neural Networks > network model that adopts the mechanism of attention, differentially weighing the significance of each part of the input data. > an architecture for transforming one sequence into another one with the help of two parts (Encoder and Decoder) but it differs from existing sequence- to-sequence models because it does not imply any Recurrent Networks (GRU, LSTM, etc.) > model (example)	 vused primarily in the field of natural language processing (NLP) and in computer vision (CV). > designed to handle sequential input data such as natural language, for tasks such as <u>translation</u> and <u>text</u> <u>summarization</u>. 	 > the model of choice for NLP problems, replacing RNN models such as LSTMs. > led to the development of <u>pretrained systems</u> such as <u>BERT</u> (Bidirectional Encoder Representations from Transformers) and <u>GPT</u> (Generative Pre-trained Transformer). 	 > attention can only deal with fixed-length text strings and has to be split into a certain number of segments or chunks before being fed into the system as input. > high computation and time required for model training.
---	--	---	---

Deep Learning Malaysia >> <u>https://deeplearningmy.com/</u>